72                                     double coeffConstTerm) {
 
   73      double A=coeffQuadTerm, B=coeffLinearTerm, C=coeffConstTerm;
 
   82      if (disc < 0) 
return roots;  
 
   83      q = -0.5*(B + (B < 0 ? -1.0 : 1.0)*sqrt(disc));
 
   85      if (q == 0) roots << q/A;
 
   90        if (!roots.contains(temp)) roots << temp; 
 
 
  106    static QList <double> 
realCubicRoots(
double coeffCubicTerm,  
double coeffQuadTerm, 
 
  107                                 double coeffLinearTerm, 
double coeffConstTerm) {
 
  108      double a=coeffQuadTerm, b=coeffLinearTerm, c=coeffConstTerm;
 
  112      if (coeffCubicTerm == 0.0) 
 
  117      if ( coeffCubicTerm != 1.0) {
 
  125      Q = (a*a - 3.0*b) / 9.0;
 
  126      R = (2*a*a*a - 9.0*a*b + 27.0*c) / 54.0;
 
  129      if ( a == 0.0 && b == 0.0 ) { 
 
  130        roots << (c < 0 ? 1.0 : -1.0)*pow(fabs(c),1.0/3.0);
 
  132      else if (R*R <= Q*Q*Q) {  
 
  133        double theta = acos(R/sqrt(Q*Q*Q)),temp;
 
  136        roots << Q*cos(theta/3.0) - a /3.0;
 
  138        temp = Q*cos((theta + 
TWOPI)/3.0) - a / 3.0;
 
  139        if (!roots.contains(temp)) roots << temp;
 
  140        temp = Q*cos((theta - 
TWOPI)/3.0) - a / 3.0;
 
  141        if (!roots.contains(temp)) roots << temp;
 
  145        A = (R < 0 ? 1.0 : -1.0 ) * pow(fabs(R) + sqrt(R*R - Q*Q*Q),1.0/3.0);
 
  146        B = A == 0.0 ? 0.0 : Q / A;
 
  148        roots << (A + B) - a / 3.0;
 
 
  176    static bool brentsRootFinder(Functor &func, 
const QList<double> pt1, 
const QList<double> pt2, 
 
  177                                 double tol, 
int maxIter, 
double &root) {
 
  178      double a = pt1[0], b = pt2[0], c, d = 0;
 
  179      double fa = pt1[1], fb = pt2[1], fc;
 
  180      double p, q, r, s, t, tol1, bnew, fbnew, temp, deltaI, deltaF;
 
  183      double offset = (a + b) / 2.0;
 
  188      if ( (fa > 0) - (fa < 0) == (fb > 0) - (fb < 0) ) {
 
  189        QString msg = 
"The function evaluations of two bounding points passed to Brents Method " 
  190                      "have the same sign.  Therefore, they don't necessary bound a root.  No " 
  191                      "root finding will be attempted.\n";
 
  198      if (fabs(fa) < fabs(fb)) {
 
  212      for (
int iter = 0; iter < maxIter; iter++) {
 
  213        tol1 = DBL_EPSILON * 2.0 * fabs(b);  
 
  214        if (a != c && b != c) {
 
  219          p = s * (t * (r - t) * (c - b) - (1 - r) * (b - a));
 
  220          q = (t - 1) * (r - 1) * (s - 1);
 
  225          bnew = b - fb * (b - a) / (fb - fa);
 
  232        temp = (3 * a + b) / 4.0;
 
  233        p = temp < b ? temp : b;
 
  234        q = b > temp ? b : temp;
 
  235        deltaI = fabs(b - bnew); 
 
  237             (bnew < p || bnew > q )                     ||  
 
  241             (mflag && deltaI >= fabs(b - c) / 2.0)  ||
 
  246             (!mflag && deltaI >= fabs(c - d) / 2.0) ||
 
  251             (mflag && fabs(b - c) < tol1)                 ||
 
  256             (!mflag && fabs(c - d) < tol1)            ) {
 
  259          bnew = (a + b) / 2.0;
 
  266          fbnew = func(bnew + offset);
 
  268          QString msg = 
"Function evaluation failed at:" + 
toString(bnew) + 
 
  269                        ".  Function must be continuous and defined for the entire interval " 
  270                        "inorder to gaurentee brentsRootFinder will work.";
 
  277        if ( (fa > 0) - (fa < 0) == (fbnew > 0) - (fbnew < 0) ) {
 
  279          deltaF = fabs(a - bnew); 
 
  285          deltaF = fabs(b - bnew); 
 
  290        if (fabs(fa) < fabs(fb)) {
 
  299        if (fabs(fb) < tol) {
 
  304        else if ( deltaF < tol1 && fabs(b) < 100.0 * tol) {
 
  314        else if (deltaF < tol1) {