Isis 3 Programmer Reference
Ransac.h
1#ifndef Ransac_h
2#define Ransac_h
8/* SPDX-License-Identifier: CC0-1.0 */
9#include <math.h>
10
11namespace Isis {
12 //functions for solving the normal equations
13 int choleski_solve(double *a, double *b, int nsize, int flag); //solves the normal
14 int inverse (double *a, int nsize); //inverses ata (only to be used after ata has been choleski decomposed by choleski_sovle)
15 int isymp(int row, int col); //used for memory optimized symetric matricies, returns the single dimensional array location equivalent to the 2D location in the symetric matrix
16
17 int indeces_from_set(int *indeces,int set, int set_size,int n);
18 int binomial_coeficient(int n, int k);
19
20 inline int isymp(int row, int col)
21 {
22 /* returns the index position of ellement [i][j] in the memory optimized symetric matrix a
23 row -> row in square symetric matrix
24 col -> column in square symetric matrix
25 */
26 int k;
27 ++row;
28 ++col;
29 if(row < col) k= row + col *(col -1)/2;
30 else k= col + row * (row - 1)/2;
31 --k;
32 return k;
33
34 }
35
36 inline int binomial_coeficient(int n, int k)
37 {
38 if( k > n)
39 return 0;
40
41 if( n < 1)
42 return 0;
43
44 int i,j,bc;
45 bc=1;
46 j=k;
47
48 for(i=k-1;i>0;i--)
49 {
50 j *= i;
51 }
52
53
54 for(i=n-k+1;i<=n;i++)
55 bc *=i;
56
57 bc/=j;
58
59 return bc;
60 }
61
62
63 /* given a desired set size, and the number of items in the population this function returns the indeces
64 of set number set. For example:
65
66 set_size = 3 n=5
67
68 Set Index0 Index1 Index2
69 1 0 1 2
70 2 0 1 3
71 3 0 1 4
72 4 0 1 5
73 5 0 2 3
74 6 0 2 4
75 7 0 2 5
76 8 0 3 4
77 9 0 3 5
78 so indeces_from_set( , 5, 3, 6) would return 0, 2, 3
79
80 set -> the number of the set starting from 1
81 set_size-> how many are in each set
82 n -> the population size
83 indeces <- the set_size indeces for set number set
84
85 return 1 if successfuly, otherwise -1
86
87 */
88 inline int indeces_from_set(int *indeces,int set, int set_size,int n)
89 {
90 //frist set_size must not be greater than n
91 if( set_size > n)
92 return -1;
93
94 //set must be >= 0
95 if( set < 0)
96 return -1;
97
98 //set must also be less than or equal to the number of possible sets
99 if( set > binomial_coeficient(n, set_size) )
100 return -1;
101
102 int i,j,k;
103
104 for( i =0,j=0;i<set_size-1;i++,j=indeces[i-1]+1)
105 {
106 k = binomial_coeficient( n - j - 1, set_size - i - 1);
107 while( set > k)
108 {
109 j++;
110 set -= k;
111 k = binomial_coeficient( n - j - 1, set_size - i - 1);
112 }
113 indeces[i] = j;
114 }
115
116 indeces[i] = j+set-1;
117
118 return 1;
119 }
120
121
122 int decompose (double *, int);
123 int foresub (double *,double *, int);
124 int backsub (double *,double *, int);
125
126#define SOLVED 1
127#define NOT_SOLVABLE 0
128#define NO_ERRORS -1
129
130
131 inline int choleski_solve (double *a, double *b, int nsize, int flag)
132 {
133 /* solves the set of linear equations square_matrix(a)delta = b
134 a <-> positive definite symetric matrix a becomes L of the LLt choleski decomposition or the inverse of a (a symetric matrix still in memory optimized mode)
135 b <-> array of doubles of size nsize, the constant part of the system of linear equations
136 nsize -> number of unkowns, also lenght of b, also square(a) is nsize x nsize
137 flag -> type of solutions sought: 1 decomposition only, 2 decomposition and solve, 3 decompose solve and inverse a
138 */
139
140 if (flag < 1 || flag > 3)
141 return NOT_SOLVABLE;
142
143 /*************** STEP 1: DECOMPOSE THE A MATRIX ***************/
144 if (! decompose (a, nsize)) return NOT_SOLVABLE;
145
146 if (flag == 1) return SOLVED;
147
148 /*************** STEP 2: FORWARD SUBSTITUTION *****************/
149 if (! foresub (a, b, nsize)) return NOT_SOLVABLE;
150
151
152 /*************** STEP 2: BACKWARD SUBSTITUTION ****************/
153 if (! backsub (a, b, nsize)) return NOT_SOLVABLE;
154
155 if (flag == 2) return SOLVED;
156
157 /*************** STEP 4: INVERSE THE A MATRIX *****************/
158 inverse (a, nsize);
159 return SOLVED;
160 }
161
162 /*******************************************************************
163 FUNCTION DECOMPOSE
164 *******************************************************************/
165 inline int decompose (double *a, int nsize)
166 {
167 /* decomposes the memory optimized symetric matirx a into LLt (Choleski decomposition)
168 a <-> positive definite symetric matrix a becomes L of the LLt choleski decomposition
169 n -> size of the square matrix a represents or number of unknowns
170 */
171 double sum;
172 double *ap1 = a - 1;
173 double *ap2;
174 double *ap3;
175 double *ap4;
176 double *ap5;
177 double *ap6 = a;
178 double *ap7;
179 int i, j, k, m, n = 2;
180
181 ap7 = a;
182 for (k = 0; k < nsize; k++)
183 {
184 ap2 = a;
185 ap3 = ap7 + 1;
186 ap4 = a -1;
187 m = 2;
188 for (i = 0; i < k; i++)
189 {
190 sum = 0.0;
191 ap5 = ap1 + 1;
192 ap4++;
193 for (j = 0; j < i; j++)
194 {
195 sum += *ap4++ * *ap5++;
196 }
197 if (*ap2 == 0.0)
198 return NOT_SOLVABLE;
199 *ap3 = (*ap3 - sum) / *ap2;ap3++;
200 ap2 += m++;
201 }
202 sum = 0.0;
203 ap1++;
204 for (j = 0; j < k; j++)
205 {
206 sum += *ap1 * *ap1;ap1++;
207 }
208 /*if ((*ap6 - sum) <= 0.0)
209 return (errcode (06));
210 *ap6 = sqrt(*ap6 - sum);*/
211
212
213 //if ((*ap6 - sum) <= 1e-20)
214 if ((*ap6 - sum) <= 0)
215 *ap6 = sqrt(-(*ap6 - sum));
216 else
217 *ap6 = sqrt(*ap6 - sum);
218
219
220 ap7 = ap6;
221 ap6 += n++;
222 }
223 return SOLVED;
224 }
225
226 /*******************************************************************
227 FUNCTION FORESUB
228 *******************************************************************/
229 inline int foresub (double *a,double *b,int nsize)
230 {
231 int i, j;
232 double sum;
233 double *ap1 = a;
234 double *bp1 = b;
235 double *bp2;
236
237 if (*ap1 == 0.0)
238 return NOT_SOLVABLE;
239 *bp1++ /= *ap1++;
240 for (i = 1; i < nsize; i++)
241 {
242 sum = 0.0;
243 for (j = 0, bp2 = b; j < i; j++)
244 {
245 sum += *ap1++ * *bp2++;
246 }
247 if (*ap1 == 0.0)
248 return NOT_SOLVABLE;
249 *bp1 = (*bp1 - sum) / *ap1;bp1++;ap1++;
250 }
251 return SOLVED;
252 }
253
254 /*******************************************************************
255 FUNCTION BACKSUB
256 *******************************************************************/
257 inline int backsub (double *a,double *b,int nsize)
258 //double *a,*b;
259 //int nsize;
260 {
261 int i,j;
262 int k = nsize - 1;
263 int m = nsize;
264 int n;
265 double sum;
266 double *ap1 = a + (k + k * (k + 1) / 2);
267 double *ap2 = ap1 - 1;
268 double *ap3;
269 double *bp1 = b + k;
270 double *bp2 = bp1;
271 double *bp3;
272
273 if (*ap1 == 0.0)
274 return NOT_SOLVABLE;
275 *bp1 = *bp1 / *ap1;bp1--;
276 for (i = k - 1; i >= 0; i--)
277 {
278 sum = 0.0;
279 n = nsize - 1;
280 for (j = nsize - 1, ap3 = ap2--, bp3 = bp2; j >= i + 1; j--)
281 {
282 sum += *ap3 * *bp3--;
283 ap3 -= n--;
284 }
285 ap1 -= m--;
286 if (*ap1 == 0.0)
287 return NOT_SOLVABLE;
288 *bp1 = (*bp1 - sum) / *ap1;bp1--;
289 }
290 return SOLVED;
291 }
292
293 /*******************************************************************
294 FUNCTION INVERSE
295 *******************************************************************/
296 inline int inverse (double *a, int nsize)
297 //double *a;
298 //int nsize;
299 {
300 int i, j, k, m, n;
301 double sum;
302 double *ap1 = a;
303 double *ap2;
304 double *ap3;
305 double *ap4;
306 double *ap5;
307
308 /* FIRST INVERSE ALL DIAGONAL ELEMENTS */
309 m = 2;
310 while (ap1 < (a + (nsize * (nsize + 1)/2)))
311 {
312 *ap1 = 1. / *ap1;
313 ap1 += m++;
314 }
315
316 /* DO FIRST SET OF MANIPULATIONS */
317 ap5 = a + 1;
318 for (i = 1; i < nsize; i++)
319 {
320 ap4 = ap5 - 1;
321 m = i + 1;
322 n = i;
323 for (j = m; j <= nsize; j++)
324 {
325 ap1 = ap5 - 1;
326 ap2 = ap3 = ap4 + i;
327 sum = 0.0;
328 for (k = i; k <= n;)
329 {
330 sum += *ap1 * *ap2++;
331 ap1 += k++;
332 }
333 ap4 += j;
334 *ap3 = -(*ap4) * sum;
335 n = j;
336 }
337 ap5 += m;
338 }
339
340 /* DO SECOND SET OF MANIPULATIONS */
341 n = 0;
342 ap1 = ap2 = ap3 = ap4 = a;
343 for (i = 0; i < nsize;)
344 {
345 ap5 = ap4;
346 m = 0;
347 for (j = i; j < nsize;)
348 {
349 ap5 += j;
350 ap1 = ap3 = ap5 + i + n;
351 ap2 = ap5 + m++;
352 sum = 0.0;
353 for (k = j; k < nsize;)
354 {
355 sum += *ap1 * *ap2;
356 ap1 += ++k;
357 ap2 += k;
358 }
359 *ap3 = sum;
360 j++;
361 }
362 ap4 += ++i;
363 n--;
364 }
365 return SOLVED;
366 }
367}
368
369#endif
This is free and unencumbered software released into the public domain.
Definition Apollo.h:16