Isis 3 Programmer Reference
ZeroBufferFit.cpp
1
7/* SPDX-License-Identifier: CC0-1.0 */
8
9#include <cmath>
10#include <string>
11#include <vector>
12#include <numeric>
13#include <iostream>
14#include <sstream>
15
16#include "ZeroBufferFit.h"
17#include "IString.h"
18#include "HiCalTypes.h"
19#include "HiCalUtil.h"
20#include "HiCalConf.h"
21#include "LeastSquares.h"
22#include "LowPassFilter.h"
23#include "MultivariateStatistics.h"
24#include "IException.h"
25
26using namespace std;
27
28namespace Isis {
29
38 ZeroBufferFit::ZeroBufferFit(const HiCalConf &conf) :
39 NonLinearLSQ(), Module("ZeroBufferFit") {
40 DbProfile prof = conf.getMatrixProfile();
41 _history.add("Profile["+ prof.Name()+"]");
42 _timet.setBin(ToInteger(prof("Summing")));
43 _timet.setLineTime(ToDouble(prof("ScanExposureDuration")));
44
45 _skipFit = IsEqual(ConfKey(prof, "ZeroBufferFitSkipFit", QString("TRUE")), "TRUE");
46 _useLinFit = IsTrueValue(prof, "ZeroBufferFitOnFailUseLinear");
47
48
49 _absErr = toDouble(ConfKey(prof, "AbsoluteError", QString("1.0E-4")));
50 _relErr = toDouble(ConfKey(prof, "RelativeError", QString("1.0E-4")));
51
52 _sWidth = toInt(ConfKey(prof, "GuessFilterWidth", QString("17")));
53 _sIters = toInt(ConfKey(prof, "GuessFilterIterations", QString("1")));
54
55 if ( prof.exists("MaximumIterations") ) {
56 setMaxIters(ToInteger(prof("MaximumIterations")));
57 }
58
59 _maxLog = toDouble(ConfKey(prof, "MaximumLog", QString("709.0")));
60 _badLines = ToInteger(prof("TrimLines"))/ToInteger(prof("Summing"));
61 _minLines = toInt(ConfKey(prof,"ZeroBufferFitMinimumLines", QString("100")));
62
63
64 QString histstr = "ZeroBufferFit(AbsErr[" + ToString(_absErr) +
65 "],RelErr[" + ToString(_relErr) +
66 "],MaxIter[" + ToString(maxIters()) + "])";
67 _history.add(histstr);
68
69 }
70
92 ostringstream hist;
93 _data = d;
94 if ( _skipFit || (!gotGoodLines(d))) {
95 _b2 = _data;
96 _coefs = HiVector(4, 0.0);
97 _uncert = _coefs;
98 _cc = HiVector(2, 0.0);
99 _chisq = 0.0;
100 if ( !gotGoodLines(d) ) {
101 hist << "NotEnoughLines(GoodLines[" << goodLines(d)
102 << "],MinimumLines[" << _minLines << "]);";
103 }
104
105 hist << "SkipFit(TRUE: Not using LMFit)";
106 _history.add(hist.str().c_str());
107 }
108 else {
109 hist << "Fit(";
110 _b2 = HiVector(goodLines(_data));
111 if ( success(curvefit()) ) {
112 _coefs = coefs();
113 _uncert = uncert();
114 hist << "Solved,#Iters[" << nIterations() << "],ChiSq[" << Chisq()
115 << "],DoF[" << DoF() << "])";
116 _history.add(hist.str().c_str());
117 _history.add("a0("+ToString(_coefs[0])+"+-"+ToString(_uncert[0])+")");
118 _history.add("a1("+ToString(_coefs[1])+"+-"+ToString(_uncert[1])+")");
119 _history.add("a2("+ToString(_coefs[2])+"+-"+ToString(_uncert[2])+")");
120 _history.add("a3("+ToString(_coefs[3])+"+-"+ToString(_uncert[3])+")");
121 }
122 else {
123 // Punt, fit a straight line to the data
124 _cc = poly_fit(d);
125 HiVector a(4);
126 a[0] = _cc[0];
127 a[1] = _cc[1];
128 a[2] = 0.0;
129 a[3] = 0.0;
130 _coefs = a;
131
132 hist << "Failed::Reason("<< statusstr() << "),#Iters["
133 << nIterations() << "])";
134 _history.add(hist.str().c_str());
135 _history.add("a0("+ToString(_coefs[0])+")");
136 _history.add("a1("+ToString(_coefs[1])+")");
137 _history.add("a2("+ToString(_coefs[2])+")");
138 _history.add("a3("+ToString(_coefs[3])+")");
139 if ( _useLinFit ) {
140 _history.add("OnFailureUse(LinearFit(Zf))");
141 }
142 else {
143 _skipFit = true;
144 _history.add("OnFailureUse(ZfBuffer)");
145 }
146 }
147 }
148 return (Yfit());
149 }
150
162 NonLinearLSQ::NLVector ZeroBufferFit::guess() {
163 int n = _data.dim();
164 int nb = n - _badLines;
165
166 HiVector b1 = _data.subarray(0, nb-1);
167 LowPassFilter gfilter(b1, _history, _sWidth, _sIters);
168
169 int nb2 = nb/2;
170 _b2 = gfilter.ref();
171 HiVector cc = poly_fit(_b2.subarray(nb2,_b2.dim()-1), nb2-1);
172
173 // Compute the 3rd term guess by getting the average of the residual
174 // at both ends of the data set.
175 Statistics s;
176
177 // Get the head of the data set
178 int n0 = std::min(nb, 20);
179 for ( int k = 0 ; k < n0 ; k++ ) {
180 double d = _b2[k] - (cc[0] + cc[1] * _timet(k));
181 s.AddData(&d, 1);
182 }
183 double head = s.Average();
184
185 // Get the tail of the data set
186 s.Reset();
187 n0 = (int) (0.9 * nb);
188 for ( int l = n0 ; l < nb ; l++ ) {
189 double d = _b2[l] - (cc[0] + cc[1] * _timet(l));
190 s.AddData(&d, 1);
191 }
192 double tail = s.Average();
193
194 // Populate the guess with the results
195 NLVector g(4, 0.0);
196 g[0] = cc[0];
197 g[1] = cc[1];
198 g[2] = head-tail;
199 g[3] = -5.0/_timet(nb-1);
200 _guess = g;
201 _history.add("Guess["+ToString(_guess[0])+ ","+
202 ToString(_guess[1])+ ","+
203 ToString(_guess[2])+ ","+
204 ToString(_guess[3])+ "]");
205 return (g);
206 }
207
219 int ZeroBufferFit::checkIteration(const int Iter, const NLVector &fitcoefs,
220 const NLVector &uncerts, double cplxconj,
221 int Istatus) {
222 _chisq = pow(cplxconj, 2.0);
223 return (Istatus);
224 }
225
227 NonLinearLSQ::NLVector ZeroBufferFit::f_x(const NLVector &a) {
228 double a0 = a[0];
229 double a1 = a[1];
230 double a2 = a[2];
231 double a3 = a[3];
232
233 int n = _b2.dim();
234 NLVector f(n);
235 for (int i = 0 ; i < n ; i++) {
236 double lt = _timet(i);
237 double et = a3 * lt;
238 double Yi = a0 + (a1 * lt) + a2 * exp(std::min(et,_maxLog));
239 f[i] = (Yi - _b2[i]);
240 }
241 return (f);
242 }
243
245 NonLinearLSQ::NLMatrix ZeroBufferFit::df_x(const NLVector &a) {
246 // double a0 = a[0];
247 // double a1 = a[1];
248 double a2 = a[2];
249 double a3 = a[3];
250
251 int n = _b2.dim();
252 NLMatrix J(n, 4);
253 for (int i = 0; i < n; i++) {
254 double lt = _timet(i);
255 double et = a3 * lt;
256 double p0 = exp (std::min(et,_maxLog));
257 J[i][0] = 1.0;
258 J[i][1] = lt;
259 J[i][2] = p0;
260 J[i][3] = a2 * lt * p0;
261 }
262 return (J);
263 }
264
267 if ( _skipFit || (!gotGoodLines(_data))) {
268 return (_data.copy());
269 }
270 else {
271 HiVector dcorr(_data.dim());
272 HiVector a = _coefs;
273 for ( int i = 0 ; i < dcorr.dim() ; i++ ) {
274 double lt = _timet(i);
275 dcorr[i] = a[0] + (a[1] * lt) + a[2] * exp(a[3] * lt);
276 }
277 return (dcorr);
278 }
279 }
280
283
284 HiVector vNorm(v.dim());
285 double v0 = v[0];
286 for ( int i = 0 ; i < v.dim() ; i++ ) {
287 vNorm[i] = v[i] - v0;
288 }
289 _history.add("Normalize[" + ToString(v0) + "]");
290 return (vNorm);
291 }
292
305 HiVector ZeroBufferFit::poly_fit(const HiVector &d, const double line0) const {
306 // Needs a linear fit to latter half of data
308 int n = d.dim();
309 for ( int i = 0 ; i < n ; i++ ) {
310 double t = _timet(line0+i);
311 fit.AddData(&t, &d[i], 1);
312 }
313 NLVector cc(2);
314 fit.LinearRegression(cc[0], cc[1]);
315 return (cc);
316 }
317
319 void ZeroBufferFit::printOn(std::ostream &o) const {
320 o << "# History = " << _history << endl;
321 // Write out the header
322 o << setw(_fmtWidth) << "Line"
323 << setw(_fmtWidth+1) << "Time"
324 << setw(_fmtWidth+1) << "Data"
325 << setw(_fmtWidth+1) << "Fit\n";
326
327 HiVector fit = Yfit();
328 for (int i = 0 ; i < _data.dim() ; i++) {
329 o << formatDbl(i) << " "
330 << formatDbl(_timet(i)) << " "
331 << formatDbl(_data[i]) << " "
332 << formatDbl(fit[i]) << endl;
333 }
334 return;
335 }
336
337} // namespace Isis
A DbProfile is a container for access parameters to a database.
Definition DbProfile.h:51
Compute a low pass filter from a Module class content.
Module manages HiRISE calibration vectors from various sources.
Definition Module.h:39
HiHistory _history
Hierarchial component history.
Definition Module.h:152
int _fmtWidth
Default field with of double.
Definition Module.h:153
QString formatDbl(const double &value) const
Properly format values that could be special pixels.
Definition Module.h:169
Container of multivariate statistics.
NonLinearLSQ Computes a fit using a Levenberg-Marquardt algorithm.
NLVector uncert() const
Return uncertainties from last fit processing.
void setMaxIters(int m)
Sets the maximum number of iterations.
int nIterations() const
Return number of iterations from last fit processing.
bool success() const
Determine success from last fit processing.
int maxIters() const
Maximum number iterations for valid solution.
std::string statusstr() const
Return error message pertaining to last fit procesing.
NLVector coefs() const
Return coefficients from last fit processing.
This class is used to accumulate statistics on double arrays.
Definition Statistics.h:93
virtual void printOn(std::ostream &o) const
Provides virtualized dump of data from this module.
bool gotGoodLines(const HiVector &d) const
Determines if the vector contains any valid lines.
HiVector Yfit() const
Computes the solution vector using current coefficents.
HiVector Normalize(const HiVector &v)
Compute normalized solution vector from result.
int DoF() const
Returns the Degrees of Freedom.
NLMatrix df_x(const NLVector &a)
Computes the first derivative of the function at the current iteration.
int checkIteration(const int Iter, const NLVector &fitcoefs, const NLVector &uncerts, double cplxconj, int Istatus)
Computes the interation check for convergence.
NLVector guess()
Compute the initial guess of the fit.
HiVector Solve(const HiVector &d)
Compute non-linear fit to (typically) ZeroBufferSmooth module.
double Chisq() const
Returns the Chi-Square value of the fit solution.
HiVector poly_fit(const HiVector &d, const double line0=0.0) const
Compute a polyonomial fit using multivariate statistics.
NLVector f_x(const NLVector &a)
Computes the function value at the current iteration.
int goodLines(const HiVector &d) const
Returns the number of good lines in the image.
ZeroBufferFit(const HiCalConf &conf)
Compute second level drift correction (Zf module)
This is free and unencumbered software released into the public domain.
Definition Apollo.h:16
int toInt(const QString &string)
Global function to convert from a string to an integer.
Definition IString.cpp:93
T ConfKey(const DbProfile &conf, const QString &keyname, const T &defval, int index=0)
Find a keyword in a profile using default for non-existant keywords.
Definition HiCalUtil.h:195
bool IsTrueValue(const DbProfile &prof, const QString &key, const QString &value="TRUE")
Determines if the keyword value is the expected value.
Definition HiCalUtil.h:266
TNT::Array1D< double > HiVector
1-D Buffer
Definition HiCalTypes.h:27
QString ToString(const T &value)
Helper function to convert values to strings.
Definition HiCalUtil.h:236
double ToDouble(const T &value)
Helper function to convert values to doubles.
Definition HiCalUtil.h:224
double toDouble(const QString &string)
Global function to convert from a string to a double.
Definition IString.cpp:149
int ToInteger(const T &value)
Helper function to convert values to Integers.
Definition HiCalUtil.h:212
bool IsEqual(const QString &v1, const QString &v2="TRUE")
Shortened string equality test.
Definition HiCalUtil.h:248
Namespace for the standard library.