Isis 2 Documentation
mar10cal - Radiometric correction of Mariner 10 images (Experimental) MAR10CAL performs a dark curent correction and linearization of Mariner 10 images. Key documents to refer to: MVM 73 TV Subsystem Calibration Report, M. Benesh and M. Morrill, JPL 615-148, 1973. Acquisition and Description of Mariner 10 Television Science Data at Mercury, G.E. Danielson, K.P. Klaasen, J.L. Anderson, Jour. Geophys. Research, Vol. 80, No. 17, pp 2357-2393, 1975 (and other articles in this issue). It should be noted that the flat field and sensitivity fluctuates as a function of vidicon temperature (especially for camera A). The camera heater was not functioning during encounters 2 and 3 and thus these encounters use a different calibration than the 1st encounter. Reliable non-linearity correction is thus available only for encounter 1 images. CAUTION: the program will process the encounter 2 and 3 images but the results are not reliable for any quantitative applications such as albedo measurements (absolute or relative) or photoclinometry. The situation is not hopeless, much effort has gone into deriving a fix for the 2nd and 3rd encounter frames and a future update of mar10cal will incorporate this work. Programmer: Tracie Sucharski, U.S.G.S., Flagstaff, and Mark Robinson, Northwestern University
Parm | Description | Default |
---|---|---|
FROM | Input cube file name (Default extension is .cub) | NONE |
TO | Output cube file name (Default extension is .cub) | NONE |
COFILE | 8-band coefficient file | -- |
DCFILE | Dark current file (Optional) | -- |
MASK | Uses a range of values to decide whether to process a pixel | YES |
BLEMMASK | Apply blemish removal mask | YES |
XPARM | Approximation for iterative solution | 75.0 |
ABSCOEF | Absolute sensitivity coefficient | -- |
EXPOFF | Exposure offset (added to exposure) | -- |
OTYPE | Output pixel type NULL = input type 1 = 8 bit 2 = 16 bit 3 = 32 bit | 3 |
ORANGE | Output min/max data range | -- |
USERNOTE | User comment |
ADDITIONAL NOTES:
Parm | Description |
---|---|
FROM | Input cube file name. If the file extension is omitted, then ".cub" will be assumed. |
TO | Output cube file name. If the file extension is omitted, then ".cub" will be assumed. |
COFILE | A cube file containing the calibration coefficients. This file should have eight bands, bands 1-4 are the coefficients for inverting the third order equation, bands 5-6 are the minimum and maximum values to process. Bands 5-6 are only used if the MASK parameter is set to "YES". If MASK is set, pixels with values outside of this range are set to NULL in the output. The mask assures that only pixels with dns in the range of the prelaunch fit are calibrated, dns outside this range are interpolations and may contain large errors. In most cases the default should be used and the files derived from the prelaunch calibration flat fields will be used. These files are named - $ISISMAR10DATA/mariner_10_"First 3 letters of FILTER_NAME"_ "INSTRUMENT_ID"_coef.cub. See also 1) Robinson et al., Jour. Geophys. Res., 97, p.18265-18274, 1992. 2) Robinson and Lucey, Science, 275, p. 197-200, 1997. 3) Robinson et al., abstracts of Lunar Planetary Sci. Conf. XXVIII, p. 1187-1188, Lunar and Planetary Inst, Houston, TX, 1997. |
DCFILE | This parameter allows the user to use an alternate dark current file. In most cases, the default should be used for this parameter to indicate the derived dark current file is to be used. The name of the derived dark current file is $ISISMAR10DATA/mariner_10_"INSTRUMENT_ID"_dc.cub. The INSTRUMENT_ID wil have a value of "A" or "B". |
MASK | If MASK is set to "YES", bands 5-6 are the minimum and maximum values to process. Any values outside of this range are set to NULL in the output file. Caution should be used in setting MASK to "NO" - the resulting dns may have less than optimal radiometric integrity. |
ABSCOEF | After dark removal and linearity correction an absolute coefficent needs to be applied to put the data in units of radiance. These coefficents (1 for each camera-filter combination) are still being refined. The values are being derived by forcing global mosaics (photometrically corrected) to Earth based measurements. for futher explanation see; 1) Robinson and Lucey, Science, 275, p. 197-200. 2) Robinson et al., abstract of Lunar Planetary Sci. Conf. XXVIII, p. 1187-1188, 1997. contact Mark Robinson at Northwestern University for latest values. robinson@earth.nwu.edu |
EXPOFF | Offset to be added to Exposure time. If the default of NULL is used the following values are added to the offset: Camera A EXPOFF = 0.316 msecs Camera B EXPOFF = 3.060 msecs These values are taken directly from the Benesh and Morrill JPL calibration document. They state that there are some unknowns with these values... Read the section on their page 38. |
OTYPE | Output pixel data type. Permitted values are: NULL = output type is same as input file pixel type 1 = 8-bit (integer with type conversion parameters) 2 = 16-bit (integer with type conversion parameters) 3 = 32-bit (floating point) When processed data are being written back into the input file, the output pixel type must be the same as the existing pixel type in the input file. |
ORANGE | Output pixel data range. If ORANGE is NULL, then the CORE_BASE and CORE_MULTIPLIER in the output file will be set to represent the same range of data as the input file. If OTYPE=1 (8-bit) or OTYPE=2 (16-bit), then the CORE_BASE and CORE_MULTIPLIER in the output file will be set to values that allow representing the specified range of output values. Output values outside this range will be stored as a special "representation saturation" value. The ORANGE parameter is ignored if OTYPE=3 (32-bit) since the CORE_BASE and CORE_MULTIPLIER are not applicable to floating point pixel values. **NOTE** For a more detailed explanation of ORANGE, tutor the orange.pdf. |
USERNOTE | Comment from the user. This will be recorded in the ISIS session log file and also in the History entry that is put into the History object of the output file. |
Contact us online at the Isis Support Center: http://isisdist.wr.usgs.gov