Isis 3 Programmer Reference
ReseauDistortionMap.cpp
1
6/* SPDX-License-Identifier: CC0-1.0 */
7#include "ReseauDistortionMap.h"
8#include "LeastSquares.h"
9#include "BasisFunction.h"
10#include "CameraFocalPlaneMap.h"
11#include "Pvl.h"
12#include "Statistics.h"
13#include <float.h>
14
15using namespace std;
16namespace Isis {
28 ReseauDistortionMap::ReseauDistortionMap(Camera *parent, Pvl &labels, const QString &fname) :
29 CameraDistortionMap(parent, 1.0) {
30 // Set up distortion coefficients
31 Pvl mast(fname);
32 PvlGroup dim = mast.findGroup("Dimensions");
33 p_distortedLines = dim.findKeyword("DistortedLines");
34 p_distortedSamps = dim.findKeyword("DistortedSamples");
35 p_undistortedLines = dim.findKeyword("UndistortedLines");
36 p_undistortedSamps = dim.findKeyword("UndistortedSamples");
37 PvlGroup mastRes = mast.findGroup("MasterReseaus");
38 PvlKeyword mline = mastRes.findKeyword("Line");
39 PvlKeyword msamp = mastRes.findKeyword("Sample");
40 p_numRes = mline.size();
41 if(mline.size() != msamp.size()) {
42 string msg = "The number of lines and samples for the master reseaus are";
43 msg += "not equal, the data file may be bad";
44 throw IException(IException::User, msg, _FILEINFO_);
45 }
46 for(int i = 0; i < p_numRes; i++) {
47 p_mlines.push_back(toDouble(mline[i]));
48 p_msamps.push_back(toDouble(msamp[i]));
49 }
50 p_pixelPitch = parent->PixelPitch();
51
52 PvlGroup refRes = labels.findGroup("Reseaus", Pvl::Traverse);
53 PvlKeyword rline = refRes.findKeyword("Line");
54 PvlKeyword rsamp = refRes.findKeyword("Sample");
55 if(rline.size() != rsamp.size()) {
56 string msg = "The number of lines and samples for the refined reseaus are";
57 msg += "not equal, the data file may be bad";
58 throw IException(IException::User, msg, _FILEINFO_);
59 }
60 for(int i = 0; i < p_numRes; i++) {
61 p_rlines.push_back(toDouble(rline[i]));
62 p_rsamps.push_back(toDouble(rsamp[i]));
63 }
64 if(p_mlines.size() != p_rlines.size()) {
65 string msg = "The number of master reseaus and refined reseaus";
66 msg += "do not appear to be equal";
67 throw IException(IException::User, msg, _FILEINFO_);
68 }
69 }
70
81 const double dy) {
82 p_focalPlaneX = dx;
83 p_focalPlaneY = dy;
84
85 // Convert distorted x,y position to a sample, line position
86 double focalSamp = dx / p_pixelPitch +
88 double focalLine = dy / p_pixelPitch +
90
91 // Find distance from input point to all nominal reseaus
92 double distances[p_numRes], wt[5];
93 int closepts[5];
94 double ldiffsq, sdiffsq;
95 for(int i = 0; i < p_numRes; i++) {
96 sdiffsq = (focalSamp - p_rsamps[i]) * (focalSamp - p_rsamps[i]);
97 ldiffsq = (focalLine - p_rlines[i]) * (focalLine - p_rlines[i]);
98 distances[i] = ldiffsq + sdiffsq;
99 }
100
101 // Get 5 closest reseaus to the input point
102 for(int ifpt = 0; ifpt < 5; ifpt++) {
103 int imin = 0;
104 for(int i = 0; i < p_numRes; i++) {
105 if(distances[i] < distances[imin]) imin = i;
106 }
107 closepts[ifpt] = imin;
108 wt[ifpt] = distances[imin];
109 distances[imin] = DBL_MAX; /* Arbitrary big number */
110 }
111
112 // Make sure 5 closest points are not colinear
113 Statistics lstats, sstats;
114 double line[5], samp[5];
115 for(int k = 0; k < 5; k++) {
116 line[k] = p_rlines[closepts[k]];
117 samp[k] = p_rsamps[closepts[k]];
118 }
119 lstats.AddData(line, 5);
120 sstats.AddData(samp, 5);
121
122 // If they are colinear, return false
123 if(lstats.StandardDeviation() < 10.0 || sstats.StandardDeviation() < 10.0) {
124 return false;
125 }
126
127 // Weight each of the 5 closest points, and solve the system of equations
128 if(wt[0] > 0.0) {
129 double scale = wt[0];
130 double rfitlines[5], rfitsamps[5], mfitlines[5], mfitsamps[5];
131 for(int ifpt = 0; ifpt < 5; ifpt++) {
132 int index = closepts[ifpt];
133 rfitlines[ifpt] = p_rlines[index];
134 rfitsamps[ifpt] = p_rsamps[index];
135 mfitlines[ifpt] = p_mlines[index];
136 mfitsamps[ifpt] = p_msamps[index];
137 wt[ifpt] = scale / wt[ifpt];
138 }
139 BasisFunction bsX("bilinearInterpX", 3, 3);
140 BasisFunction bsY("bilinearInterpY", 3, 3);
141 LeastSquares lsqX(bsX);
142 LeastSquares lsqY(bsY);
143
144 vector<double> known;
145 known.resize(3);
146 for(int i = 0; i < 5; i++) {
147 known[0] = 1.0;
148 known[1] = rfitsamps[i];
149 known[2] = rfitlines[i];
150 lsqX.AddKnown(known, mfitsamps[i], wt[i]);
151 lsqY.AddKnown(known, mfitlines[i], wt[i]);
152 }
153 lsqX.Solve();
154 lsqY.Solve();
155
156 known[1] = focalSamp;
157 known[2] = focalLine;
158
159 // Test to make sure the point is inside of the image
160 double undistortedFocalSamp = lsqX.Evaluate(known);
161 double undistortedFocalLine = lsqY.Evaluate(known);
162 if(undistortedFocalSamp < 0.5) return false;
163 if(undistortedFocalLine < 0.5) return false;
164 if(undistortedFocalSamp > p_undistortedSamps + 0.5) return false;
165 if(undistortedFocalLine > p_undistortedLines + 0.5) return false;
166
167 // Convert undistorted sample, line position to an x,y position
168 p_undistortedFocalPlaneX = (undistortedFocalSamp - p_undistortedSamps
169 / 2.0) * p_pixelPitch;
170 p_undistortedFocalPlaneY = (undistortedFocalLine - p_undistortedLines
171 / 2.0) * p_pixelPitch;
172 }
173 else { // If the point passed in is a reseau...
174 int index = closepts[0];
176 * p_pixelPitch;
177 p_undistortedFocalPlaneY = (p_mlines[index] - p_undistortedLines / 2.0)
178 * p_pixelPitch;
179 }
180 return true;
181 }
182
193 const double uy) {
196
197 // Convert undistorted values to sample, line positions
198 double undistortedFocalSamp = ux / p_pixelPitch + p_undistortedSamps / 2.0;
199 double undistortedFocalLine = uy / p_pixelPitch + p_undistortedLines / 2.0;
200
201 // Find distance from input point to all nominal reseaus
202 double distances[p_numRes], wt[5];
203 int closepts[5];
204 double ldiffsq, sdiffsq;
205 for(int i = 0; i < p_numRes; i++) {
206 sdiffsq = (undistortedFocalSamp - p_msamps[i]) *
207 (undistortedFocalSamp - p_msamps[i]);
208 ldiffsq = (undistortedFocalLine - p_mlines[i]) *
209 (undistortedFocalLine - p_mlines[i]);
210 distances[i] = ldiffsq + sdiffsq;
211 }
212
213 // Get 5 closest reseaus to the input point
214 for(int ifpt = 0; ifpt < 5; ifpt++) {
215 int imin = 0;
216 for(int i = 0; i < p_numRes; i++) {
217 if(distances[i] < distances[imin]) imin = i;
218 }
219 closepts[ifpt] = imin;
220 wt[ifpt] = distances[imin];
221 distances[imin] = DBL_MAX; /* Arbitrary big number */
222 }
223
224 // Make sure 5 closest points are not colinear
225 Statistics lstats, sstats;
226 double line[5], samp[5];
227 for(int k = 0; k < 5; k++) {
228 line[k] = p_rlines[closepts[k]];
229 samp[k] = p_rsamps[closepts[k]];
230 }
231 lstats.AddData(line, 5);
232 sstats.AddData(samp, 5);
233 // If they are colinear, return false
234 if(lstats.StandardDeviation() < 10.0 || sstats.StandardDeviation() < 10.0) {
235 return false;
236 }
237
238 // Weight each of the 5 closest points and solve the system of equations
239 if(wt[0] > 0.0) {
240 double scale = wt[0];
241 double rfitlines[5], rfitsamps[5], mfitlines[5], mfitsamps[5];
242 for(int ifpt = 0; ifpt < 5; ifpt++) {
243 int index = closepts[ifpt];
244 mfitlines[ifpt] = p_mlines[index];
245 mfitsamps[ifpt] = p_msamps[index];
246 rfitlines[ifpt] = p_rlines[index];
247 rfitsamps[ifpt] = p_rsamps[index];
248 wt[ifpt] = scale / wt[ifpt];
249 }
250 BasisFunction bsX("bilinearInterpX", 3, 3);
251 BasisFunction bsY("bilinearInterpY", 3, 3);
252 LeastSquares lsqX(bsX);
253 LeastSquares lsqY(bsY);
254
255 vector<double> known;
256 known.resize(3);
257 for(int i = 0; i < 5; i++) {
258 known[0] = 1.0;
259 known[1] = mfitsamps[i];
260 known[2] = mfitlines[i];
261 lsqX.AddKnown(known, rfitsamps[i], wt[i]);
262 lsqY.AddKnown(known, rfitlines[i], wt[i]);
263 }
264 lsqX.Solve();
265 lsqY.Solve();
266
267 known[1] = undistortedFocalSamp;
268 known[2] = undistortedFocalLine;
269
270 // Test points to make sure they are in the image
271 double distortedFocalSamp = lsqX.Evaluate(known);
272 double distortedFocalLine = lsqY.Evaluate(known);
273 if(distortedFocalSamp < 0.5) return false;
274 if(distortedFocalLine < 0.5) return false;
275 if(distortedFocalSamp > p_undistortedSamps + 0.5) return false;
276 if(distortedFocalLine > p_undistortedLines + 0.5) return false;
277
278 // Convert distorted sample, line position back to an x,y position
279 p_focalPlaneX = (distortedFocalSamp -
281 p_focalPlaneY = (distortedFocalLine -
283 }
284
285 else { // If the point passed in is a reseau...
286 int index = closepts[0];
287 p_focalPlaneX = (p_rsamps[index] -
289 p_focalPlaneY = (p_rlines[index] -
291 }
292 return true;
293 }
294
295} // end namespace isis
Generic linear equation class.
Distort/undistort focal plane coordinates.
double p_focalPlaneX
Distorted focal plane x.
double p_undistortedFocalPlaneX
Undistorted focal plane x.
double p_undistortedFocalPlaneY
Undistorted focal plane y.
Camera * p_camera
The camera to distort/undistort.
double p_focalPlaneY
Distorted focal plane y.
double PixelPitch() const
Returns the pixel pitch.
Definition Camera.cpp:2772
CameraFocalPlaneMap * FocalPlaneMap()
Returns a pointer to the CameraFocalPlaneMap object.
Definition Camera.cpp:2866
Isis exception class.
Definition IException.h:91
@ User
A type of error that could only have occurred due to a mistake on the user's part (e....
Definition IException.h:126
Generic least square fitting class.
Contains multiple PvlContainers.
Definition PvlGroup.h:41
Container for cube-like labels.
Definition Pvl.h:119
A single keyword-value pair.
Definition PvlKeyword.h:87
@ Traverse
Search child objects.
Definition PvlObject.h:158
std::vector< double > p_msamps
Master Reseau Locations.
std::vector< double > p_rsamps
Refined Reseau Locations.
double p_undistortedSamps
Dimensions of undistorted cube.
virtual bool SetFocalPlane(const double dx, const double dy)
Finds the undistorted x/y position of the given distorted point.
double p_pixelPitch
Pixel Pitch of parent Camera.
int p_numRes
Number of Reseaus.
ReseauDistortionMap(Camera *parent, Pvl &labels, const QString &fname)
Creates a ReseauDistortionMap object.
virtual bool SetUndistortedFocalPlane(const double ux, const double uy)
Finds the distorted x/y position of the given undistorted point.
double p_distortedSamps
Dimensions of distorted cube.
This class is used to accumulate statistics on double arrays.
Definition Statistics.h:93
This is free and unencumbered software released into the public domain.
Definition Apollo.h:16
double toDouble(const QString &string)
Global function to convert from a string to a double.
Definition IString.cpp:149
Namespace for the standard library.